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This file contains descriptive plots of feature correlation and missing data patterns in the
benchmark datasets; plots of Bayesian hyperparameter optimization for training ANNs; and
test set error plots for classifiers trained on MNAR-perturbed data.



S1 Descriptive plots
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Figure 1: Correlation matrix for Adult training set. Pearsoepsn product-moment correlation coefficients
(Pearson’s r) are computed with listwise-deletion of missing values.
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Figure 2: Correlation matrix for
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CVRs training set. See footnotes for Figure SM-1.
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Figure 3: Histogram of proportion of missing values in each feature (Left) of Adult training set and

aggregation plot of all existing combinations of missing and non-missing values in the samples (Right).
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Figure 4: Histogram of proportion of missing values in each feature (Left) of CVRs training set and
aggregation plot of all existing combinations of missing and non-missing values in the samples (Right).



S2 Bayesian hyperparameter optimization

The goal of Bayesian optimization is to choose a point in the hyperparameter space that
appropriately balances information gain and exploitation. Figure SM-5 shows the exploration
of hyperparameter space during Bayesian optimization for both Adult and CVRs datasets.
Each circle represents a candidate ANNs classifier trained on a differently imputed and
perturbed dataset. More circles appear in the plot for CVRs simply due to the fact that the
training set is smaller. We see that most of the candidate models use dropout and have an
initial learning rate close to the maximum of 0.01. The plurality of candidate models appear
to either have momentum (1) or not (0).
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Figure 5: Exploration of hyperparameter space during Bayesian optimization. Each circle represents a
candidate ANNs classifier trained on a differently imputed and perturbed dataset.



S3 Results with MINAR perturbation

We perturb the training data according to the MNAR mechanism

(5, if Yij €A

0, otherwise,

Pr<Mij = 1|yij7 ¢) = {

where A is a vector containing at least one value from each categorical feature that we
determine likely to be missing. We select categorical values in the Adult dataset that are
theoretically correlated with low socioeconomic status, such as the values “Without pay” and
“Never worked” for the feature Work class. The existing literature suggests item nonresponse
in surveys is correlated with low income and low education (Rubin et al., 1995). We include
in A only “nay” votes, under the assumption that refusing to take position on an issue or
missing a vote is akin to voting against the issue.
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Figure 6: Error rates on the Adult test set with (bottom) and without (top) missing data imputation, for
various levels of MNAR-perturbed categorical training features (x-axis). Error bars represent one standard
deviation from the test error prediction.
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Figure 7: Error rates on the CVRs test set with (bottom) and without (top) missing data imputation. See
footnotes for Figure SM-6.
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